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Abstract— Multi-modality medical data provide comple-
mentary information, and hence have been widely explored
for computer-aided AD diagnosis. However, the research is
hindered by the unavoidable missing-data problem, i.e., one
data modality was not acquired on some subjects due to
various reasons. Although the missing data can be imputed
using generative models, the imputation process may intro-
duce unrealistic information to the classification process,
leading to poor performance. In this paper, we propose
the Disentangle First, Then Distill (DFTD) framework for AD
diagnosis using incomplete multi-modality medical images.
First, we design a region-aware disentanglement module
to disentangle each image into inter-modality relevant
representation and intra-modality specific representation
with emphasis on disease-related regions. To progressively
integrate multi-modality knowledge, we then construct
an imputation-induced distillation module, in which a
lateral inter-modality transition unit is created to impute
representation of the missing modality. The proposed DFTD
framework has been evaluated against six existing methods
on an ADNI dataset with 1248 subjects. The results show
that our method has superior performance in both AD-CN
classification and MCI-to-AD prediction tasks, substantially
over-performing all competing methods.

Index Terms— Alzheimer’s disease, mild cognitive impair-
ment, multi-modality diagnosis, modality imputation.
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I. INTRODUCTION

ALZHEIMER’S disease (AD) and mild cognitive impair-
ment (MCI) are neurodegenerative disorders and pose

a great threat to the health of elderly people [1], [2].
As deep learning has achieved excellent performance in
medical image analysis [3], [4], numerous deep learning
based techniques have been applied to the diagnosis of
AD and the conversion from MCI to AD. Recently, the
multi-modality PET and MRI imaging has attracted ever-
growing research interests by providing complementary
functional and structural information. However, due to a
radioactive concern and high cost, patient dropout is a
common and serious challenge in multi-modality imaging
practice, leading to the modality missing issue [5], [6],
[7]. For instance, all subjects in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database [8] have baseline
structural magnetic resonance imaging (sMRI) data, while only
approximately half subjects have baseline fluorodeoxyglucose
positron emission tomography (PET) scans. Modality missing
brings massive difficulties to fully explore the relevance
among different modalities. Therefore, finding a way to utilize
the incomplete multi-modality data is of great significance
for improving the performance of multi-modality AD
diagnosis.

An intuitive way to tackle this problem is to discard the
subjects with incomplete scans [9], [10]. Such a solution,
however, reduces the number of subjects available for
model training, leading to performance degradation. Hence,
extensive research efforts have been devoted to novel solutions
based on subspace learning [6], [11], [12], knowledge
distillation [13], [14], and missing data imputation [15], [16],
[17], [18]. Subspace learning-based methods attempt to learn
a common latent feature space using modality-complete data
and an independent latent modality-specific feature space
using modality-incomplete data, and then projected the latent
representations into the label space for AD diagnosis [11].
Knowledge distillation-based methods distill the knowledge
learned by a teacher network, which take multi-modality
information as input, to a student network designed for
mono-modality diagnosis [13]. Despite fully utilizing all
available data, these methods reply only on modality-complete
data to depict the relevance among different modalities.
Moreover, they cannot learn from both modality-complete
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and -incomplete data using a unified model, and hence bring
extra difficulties to model design and training. Missing data
imputation-based methods have been increasingly studied.
These methods first impute the missing modality in the feature,
kernel or image space [15], [16], [17], and then perform
diagnosis using both real and synthetic modality-complete
data. They achieve improved performance in disease diagnosis
due to using an enlarged training dataset and the increased
diversity of feature expression caused by imputation. Although
not increasing input information, missing data imputation
provides a different way to depict the disease-related features
and thus helps the model to discovery useful information that
is hard to be captured in the existing modality.

However, missing data imputation-based methods have
two major limitations. First, they utilize the whole image
to perform imputation, which may include redundant and
biased information. Recent studies [19], [20] demonstrate that
the information within a modality can be disentangled into
two parts: the inter-modality relevant information and intra-
modality specific information. The former characterizes the
disease patterns in related but different ways, like the different
impressions would be formed when viewing a mountain from
different sides. Hence, translating this part of information from
the existing modality to the missing modality is meaningful
and feasible. However, the latter represents the exclusive
patterns of the disease captured by each modality. Forcing the
model to learn this part of information may introduce biases
to the synthetic image, leading subsequently to less-accurate
diagnosis. Therefore, we suggest separating the inter-modality
relevant information from the existing modality and using
it alone to impute the corresponding inter-modality relevant
information of the missing modality. Second, most imputation-
based methods first explicitly generate the missing-modality
image and then fuse features of multi-modality images for
diagnosis. Obviously, the missing-modality imputation and
multi-modality disease diagnosis are performed sequentially
as two sub-tasks with different objectives, which may result
in sub-optimal solutions. Inspired by knowledge distillation
methods [21], [22], in which the multi-modality knowledge
is integrated into the mono-modality model that can be
directly used for image analysis, we advocate to combine
the merits of missing-modality imputation and knowledge
distillation. Specifically, we perform modality imputation and
multi-modality knowledge fusion in the training phase, and
then distill the multi-modality knowledge to a mono-modality
branch. Thus, MI I D can conduct multi-modality diagnosis
using only single-modality data.

In this paper, we propose a Disentangle First, Then Distill
(DFTD) framework for AD diagnosis using incomplete multi-
modality PET and sMRI imaging. Under this framework,
we first disentangle the existing-modality image into inter-
modality relevant representations and intra-modality specific
representations, and then perform multi-modality knowledge
distillation to impute the missing-modality image based
on the inter-modality relevant representations. Specifically,
considering the variable contributions of brain regions to AD
diagnosis, we design a region-aware disentanglement module
to highlight the discriminative regions in the disentanglement
process, resulting in the disentangled features with a strong
discriminatory power. Meanwhile, we construct an imputation-

induced distillation module to progressively integrate and
distill multi-modality knowledge. In this module, a novel
lateral inter-modality transition unit is proposed to impute the
representations of those modality-missing subjects. The major
contributions of this work are as follows:

• Different to conventional imputation-based methods
which use the whole existing-modality image to impute
the missing modality, we propose region-aware dis-
entanglement to use only the inter-modality relevant
information for imputation and to integrate diagnosis-
related image regions into the disentanglement process,
avoiding generating redundant and biased information.

• Combining the merits of imputation-based and knowledge
distillation-based methods, we propose an imputation-
induced distillation module, which can impute the rep-
resentations of modality-missing subjects and diagnose a
subject using only single-modality data.

• Experimental results on the ADNI dataset suggest that
our DFTD framework achieves superior performance over
five state-of-the-art approaches on both AD classification
and MCI conversion prediction.

II. RELATED WORK

A. Learning With Missing Modalities

Many research efforts have been devoted to addressing
the missing modality issue for medical image analysis,
resulting in many methods based mainly on subspace
learning [23], [24], knowledge distillation [21], [22], and
missing data imputation [25], [26]. In subspace learning
based methods [23], [24], a common latent feature space
is learned using modality-complete data and an independent
modality-specific feature space is learned using modality-
incomplete data. Zhou et al. [23] devised a correlation
module to capture multi-modality relations, and then fused
all available features in a latent representations with an
attention module. Considering the distinct role of modality
information in the segmentation of different tumor regions,
Yang et al. [24] proposed to first decouple the modality-
specific information from MRI data and then explicitly model
the correlation of different modalities for brain tumor seg-
mentation. Knowledge distillation-based methods distill multi-
modality knowledge into mono-modality knowledge through
a ‘teacher-student’ network. Chen et al. [21] designed a novel
privileged knowledge learning framework, under which they
used both a pixel-level and an image-level distillation schemes
to distill the privileged multi-modality information for single-
modality image segmentation. Wang et al. [22] adopted a
novel adversarial co-training mechanism for both full-modality
and missing-modality branches, which can supplement each
other’s feature representations and encourage the alignment of
latent representations. Missing data imputation aims to impute
missing modalities to construct complete multi-modality
data. Gao et al. [25] proposed a generative model, which
characterizes the joint distribution of image and non-image
data with a class regularization loss on imputed data to recover
discriminative information. Hamghalam et al. [26] designed
a Multi-modal Gaussian process prior variational autoencode
to impute one or more missing modalities by exploring sub-
modality correlations.
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B. Missing Data Imputation-Based AD Diagnosis
Due to the missing data issue, data imputation methods have

been proposed for multi-modality AD diagnosis [11], [16],
[17], [27], [28], [29], [30], [31]. Zhou et al. [11] recovered
the missing modality by maximizing the dependency among
different modalities and integrated missing data recovery,
latent space learning, and image label prediction into a
unified framework. Generative adversarial networks (GANs)
have been used to synthesize the missing modality data
based on the existing modality data [17], [27], [28], [30],
[31]. Pan et al. [30] employed Cycle-GAN to synthesize
the missing PET images based on the corresponding MRI
scans and achieved good performance using both real and
synthetic multi-modality PET and MRI images. Considering
the variation of the discriminatory capability over modalities,
they further proposed a disease-image-specific deep learning
(DSDL) framework to impute the missing scans which
are more consistent with real ones from a diagnostic
perspective [31]. Cao et al. [17] proposed Auto-GAN to
generate missing modalities and introduced a self-supervised
learning scheme for better synthesis. AutoGAN can estimate
any missing modality by imposing a modality mask vector
to input images. Despite improved performance, these
methods directly use the existing modality to impute the
missing modality and may introduce redundant and biased
information to synthetic images. Hence, we design a region-
aware disentanglement module to split the information of
existing modality into two parts, and then perform missing
modality imputation based only on the inter-modality relevant
representations.

C. Feature Disentanglement
Deep learning models encode an image into a high-

dimensional representation, which is highly entangled [32].
To obtain the specific information from the learned rep-
resentation, many feature disentanglement methods have
been proposed, such as InfoGAN [33], β-VAE [34], and
JointVAE [35]. The effectiveness of feature disentanglement
in image classification has been demonstrated extensively.
After disentangling the modality-exclusive information from
the learned representations, Guo et al. [19] reduced the impact
of such information and thus improved the interpretability
of extracted features. Lu et al. [20] proposed a cross-
modality shared-specific feature transfer algorithm to improve
the performance of person re-identification via exploring the
potential of both modality-shared and modality-specific infor-
mation. Sanchez et al. [36] proposed a method to disentangle
the representations of images into shared representations
and exclusive representations based on mutual information
estimation. Li et al. [37] proposed a self-supervised learning
algorithm to effectively disentangle modality-invariant features
and patient-similarity features for retinal disease diagnosis.
Chen et al. [38] utilized feature disentanglement to decompose
the input into the modality-specific appearance code and
the modality-invariant content code to perform brain tumor
segmentation. In this work, we attempt to disentangle the
image information into inter-modality relevant representations
and inner-modality specific representations while considering
the variable contributions of different image regions to AD
diagnosis.

D. Multi-Modality Knowledge Distillation
Multi-modality knowledge distillation aims to transfer

modality-correlated knowledge from a multi-modality net-
work (teacher) to a mono-modality network (student) [39].
Hu et al. [40] proposed KD-Net, which uses multi-modality
knowledge distillation to improve the performance of brain
tumor segmentation. Sonsbeek et al. [41] proposed variational
knowledge distillation to leverage the knowledge in both
electronic health records and medical images for chest
disease classification. Valverde et al. [42] presented the
self-supervised MM-DistillNet framework, which consists of
multiple teachers that leverage diverse modalities, includ-
ing RGB, depth, and thermal images, to simultaneously
exploit complementary cues and distill knowledge into
a single audio student network. Recently, self-knowledge
distillation has been proposed, which trains a student
network progressively to distill its own knowledge without
a pre-trained teacher network [43], [44]. Ji et al. [44]
proposed the feature refinement via self-knowledge distillation
(FRSKD) framework, which utilizes an auxiliary self-teacher
network to transfer refined knowledge to the classification
network. In this work, we formulate multi-modality image
classification as a self-knowledge distillation task and
then progressively discover the underlying multi-modality
knowledge embedded in a specific modality. Different to other
self-knowledge distillation methods, our method performs
modality transition before fusing multi-modality features in
the teacher network, aiming to impute representations for
those modality-missing subjects. Thus, multi-modality feature
integration and knowledge distillation can be performed on all
subjects.

III. METHOD

A. Overview
Let a modality-complete case be denoted by {xa, xb, y},

where xa and xb are the images of modality a and b,
respectively, and y is the disease label. Then, a modality-
incomplete case (e.g., with missing modality b) can be
denoted by {xa, y}. The proposed DFTD framework aims to
predict the disease label y based on the images of either
two modalities (i.e., {xa, xb}) or only the existing modality
(i.e., {xa}). To achieve this goal, the DFTD framework
consists of a region-aware disentanglement module MR AD
and an imputation-induced distillation module MI I D (see
Fig. 1). The inter-modality relevant representation and intra-
modality specific representation produced by MR AD are
denoted by {ca, cb} and {sa, sb}, respectively. Then, the global
representations fa = [ca, sa] and fb = [cb, sb] are fed
to MI I D for multi-modality feature distillation and disease
classification. The classification process can be formally
expressed as

ŷ = MI I D( fa, fb). (1)

The MI I D module contains three components: a student
branch S, an integrated teacher branch T , and a lateral inter-
modality transition unit ULIT . The ULIT unit is trained using
the inter-modality relevant representations (i.e., ca and cb),
aiming to learn a mapping from modality a to b in the latent
feature space. For a modality-incomplete data, the trained
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Fig. 1. Architecture of the proposed Disentangle First, Then Distill framework. There are two core modules: (1) a region-aware disentanglement
module for disentangling each image into inter-modality relevant representation and intra-modality specific representation and (2) an imputation-
induced distillation module for simultaneous missing modality imputation and multi-modality knowledge distillation. For modality-complete data
(modality a and b), data flows on both solid lines and dashed lines. For modality-incomplete subjects (missing modality b), data flows on the solid
lines only. Notations are explained in the main text.

TABLE I
SYMBOLS USED IN THIS PAPER

ULIT is able to impute the representation c′

b for modality
b based on ca . In this case, the classification process can be
expressed as

ŷ ≈ MI I D( fa, c′

b). (2)

Table I describes all relevant symbols used in our DFTD
framework. We now delve into the details of each
module.

B. Region-Aware Disentanglement

The region-aware disentanglement module MR AD is
designed to disentangle each brain image into the inter-
modality relevant representation and intra-modality specific
representation. Since there is little relevance between the
intra-modality specific representations of two modalities, it is
almost impossible for our model to translate this representation
from the existing modality a to the missing modality b.
By contrast, the inter-modality relevant representation is the
part of information that can be translated between two
modalities. Therefore, we only utilize this representation
to perform missing modality imputation. Although such
imputation does not bring any extra information, but it
may make it possible to use the available information
more effectively, as the imputed inter-modality relevant
representation of the missing modality provides a different
view of the disease pattern. Therefore, similar to other
missing data imputation-based methods, jointly using the
inter-modality relevant representation of the existing modality
and the imputed inter-modality relevant representation of
the missing modality for disease classification may produce
better performance than using only a single modality. Besides,
considering brain regions have different contributions to AD
diagnosis, we introduce the region-aware disentanglement
mechanism to highlight the discriminative regions in the
disentanglement process, resulting in the disentangled features
with a strong discriminatory ability.

1) Inter-Modality Relevant Representation Learning: Given
a modality-complete data {xa, xb, y}, two networks which
extract the inter-modality relevant representations ca and cb,
respectively, are denoted as Fa

◦ Ha
c : xa → ca and Fb

◦ Hb
c :

xb → cb. To make the representations ca have discriminatory
power for AD diagnosis, encoder Fa and Ha

c are optimized
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via maximizing the cross MI between its output ca and the
features of most disease-related local region in image xb.

To highlight the brain regions with discriminatory power,
we design a region saliency re-weighting strategy and
incorporate it into the disentanglement process. For each
modality (e.g., modality a for simplicity), let the intermediate
feature maps generated by Fa be denoted by ma , which is split
into N = 4 × 4 × 4 non-overlapping regions. Each region is
represented by a feature vectors rai and is assigned a learnable
weight {ωai } to measure its contribution to the diagnosis. The
weighted average MI can be calculated as follows

Lrel
M I =

1
N

∑N

i=1
(ωai ÎJ SD(cb; rai ) + ωbi ÎJ SD(ca; rbi )),

(3)

where ÎJ SD means the cross MI is maximized based on the
Jensen-Shannon divergence (JSD). The weights {ωai }

N
i=1 and

{ωbi }
N
i=1 are updated with other model parameters.

When maximizing the cross MI between ca and rbi ,
we employ a negative sampling strategy similar to Deep
Infomax [45]. For the jth sample in a mini-batch, we regard
its inter-modality relevant representation ca ( j) of xa and the
feature vector of the i th region rbi ( j) of xb as a real pair.
Then, the mini-batch is shuffled and we obtained a new feature
vector rbi (k) that belongs to the kth sample. We now regard
ca ( j) and rbi (k) as a fake pair. We design a discriminator Sa

c
to distinguish these two types of pairs, and the loss function
of Sa

c is defined as follows:

L i
Sa

c
= log(1 + ez)(Sa

c (ca ( j), rbi (k))

− log(1 + ez)(Sa
c (ca ( j), rbi ( j)). (4)

Similarly, the loss function of Sb
c is defined to maximize the

MI between cb and xa .

L i
Sb

c
= log(1 + ez)(Sb

c(cb( j), rai (k))

−log(1 + ez)(Sb
c(cb( j), rai ( j))

(5)

Therefore, the loss function for learning the inter-modality
relevant representation is as follows:

Lrel
=

1
N

∑N

i=1
(ωai L i

Sb
c
+ ωbi L i

Sa
c
). (6)

2) Intra-Modality Specific Representation Learning: Simi-
larly, the intra-modality specific representations sa and sb,
which capture the remaining information of each modality,
are extracted by two networks, denoted as Fa

◦ Ha
s : xa → sa

and Fb
◦Hb

s : xb → sb. For xa , we first estimate and maximize
the weighted average MI between the region features rai and
global representation fa = [ca, sa]. For xb, we perform the
same operation. Then, the loss function is defined as follows

Lspe
M I =

1
N

∑N

i=1
(ωai ÎJ SD( fa; rai ) + ωbi ÎJ SD( fb; rbi )).

(7)

Similarly, we employ the negative sampling strategy to
maximize the weighted average MI between rai and fa . For the
jth sample in a mini-batch, we regard its global representation
fa ( j) and the feature vector of the i th region rai ( j) as a real

pair. Then, the mini-batch is shuffled and we obtained a new
feature vector rai (k) that belongs to the kth sample. We now
regard fa ( j) and rai (k) as a fake pair. We design a discriminator
Sa

s to distinguish these two pairs, and the loss function of Sa
s

is defined as follows:

L i
Sa

s
= log(1 + ez)(Sa

s ( fa ( j), rai (k))

− log(1 + ez)(Sa
s ( fa ( j), rai ( j)). (8)

The loss function of Sb
2 is defined to maximize the average

MI between the region features rbi and global representation
fb = [cb, sb].

L i
Sb

s
= log(1 + ez)(Sb

2( fb( j), rbi (k))

− log(1 + ez)(Sb
2( fb( j), rbi ( j)) (9)

Since the inter-modality relevant representation ca has
already been calculated, we enforce the intra-modality specific
representation sa to include the information which has not been
captured by ca . Therefore, the mutual information between
sa and ca must be minimized. According to the information
theory, the mutual information between features ca and sa can
be expressed as follows

I (ca, sa) =

∫
ca

∫
sa

p(ca, sa)log
(

p(ca, sa)

p(ca)p(sa)

)
dca dsa . (10)

The mutual information I (ca, sa) can be rewritten as the
Kullback-Leibler divergence between the joint probability
distribution Pcasa and the product of the marginal distributions
Pca Psa , shown as follows

I (ca, sa) = DK L(Pcasa ||Pca Psa ). (11)

Following the optimization method in [36], we relax
the minimization of I (ca, sa) to the minimization of
DJ S(Pcasa ||Pca Psa ) in an adversarial manner (see Eq. 12).
A discriminator Da

s is trained to classify representations drawn
from Pcasa as fake samples and representations drawn from
Pca Psa as real samples.

La
adv = Ep(ca)p(sa)[logDa

s (ca, sa)]

+ Ep(ca ,sa)[log(1 − Da
s (ca, sa))]

(12)

Similarly, the mutual information between sb and cb can be
minimized by Eq. 13.

Lb
adv = Ep(cb)p(sb)[logDb

s (cb, sb)]

+ Ep(cb,sb)[log(1 − Db
s (cb, sb))] (13)

Therefore, the loss for intra-modality specific representation
learning is as follows

max min Lspe
= Lspe

M I − La
adv − Lb

adv. (14)

C. Imputation-Induced Distillation
After obtaining the inter-modality relevant representation

of the existing-modality image that is suitable for modality
imputation, a conventional operation is to first impute
the features of the missing-modality image and then fuse
the features of two modalities for classification. In these
methods, the missing-modality imputation and multi-modality
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diagnosis are performed sequentially as two sub-tasks with
different objectives, which may result in sub-optimal solutions.
To address this issue, we propose the imputation-induced
distillation module MI I D , which can integrate the missing-
modality imputation and multi-modality knowledge fusion
into a unified framework, and can conduct multi-modality
diagnosis using only single-modality data. The MI I D module
consists of three components, including a student branch
S , an integrated teacher branch T , and a lateral inter-
modality transition unit ULIT . The student branch S takes
the global features fa of modality a as its input and performs
mono-modality classification. The teacher branch T takes
the global features of both modalities (i.e., fa and fb) as
its input and performs multi-modality feature integration as
well as classification. For modality-incomplete subjects, the
lateral inter-modality transition unit ULIT imputes the missing
modality representations at each scale (see Fig. 1). With
the existing and imputed representations, T performs multi-
modality feature integration and the integrated multi-modality
features are then transferred to S to improve the classification
performance.

1) Lateral Inter-Modality Transition: The lateral inter-
modality transition unit ULIT consists of an encoder E and a
decoder D. During training, the encoder E converts the inter-
modality relevant representation ca into a latent representation,
which is then sent to the decoder D to produce the translated
feature c′

b. The transition error is defined as follows

L L I T =
∥∥c′

b − cb
∥∥

2 = ∥D(E(ca) − cb∥2, (15)

where the operator ∥a − b∥2 represents the Euclidean distance
between a and b. After training ULIT with modality-complete
data, we can use it to impute the representation of missing
modality b for modality-incomplete subjects.

2) Multi-Modality Feature Integration and Transfer: We
concatenate the global representation fa , global representation
fb and imputed inter-modality relevant representation c′

b
together, and then employ a 1 × 1 convolution kernel to fuse
them into a unified feature vector j t

0, shown as follows

j t
0 = Conv( fa, fb, c′

b). (16)

Note that, for modality-incomplete subjects, the global
representation fb is not available and zero-padding is used
to keep the dimension of concatenated features unchanged.

Let ot
i and os

i denote the features of the teacher branch
T and student branch S at the ith layer, respectively.
We employed a 1 × 1 convolutional kernel to fuse ot

i , os
i and

ULIT (ca) into a unified feature vector. To make the dimension
of ULIT (ca) same with ot

i and os
i , we used the max-pooling

operation to resize ULIT (ca) before feature fusion. Thus, the
feature of T and S can be fused as

j t
i = Conv(os

i , resi ze(ULIT (ca)), ot
i−1). (17)

Following the strategy of generalized knowledge distillation,
we transfer useful multi-modality knowledge from the teacher
branch T to the student branch S using their soft labels. The
soft labels of T and S are defined as follows

p̂t = so f tmax(T ( j t
0)/K ) (18)

p̂s = so f tmax(S( fa)/K ), (19)

where K is the temperature scaling parameter that controls the
softness of p̂t and p̂s . The soft labels uncover the relations
between classes that is harder to detect with hard labels. The
knowledge distillation loss for soft labels is defined as

LP
Dis = DK L( p̂s || p̂t ). (20)

Moreover, the knowledge distillation is also performed through
the feature consistency constraint between two branches. The
feature distillation loss LF

Dis is defined as

LF
Dis =

z∑
i=1

||φ(ot
i ) − φ(os

i )||2, (21)

where φ is a L2 normalization operation.
The student branch S and teacher branch T are supervised

by their common ground-truth label using the cross-entropy
loss. Therefore, the loss for multi-modality feature integration
and transfer is as follows

LMI I D = LC E ( fa, y) + LC E ( j t
0, y) + α · LP

Dis( p̂s, p̂t ; K )

+ β · LF
Dis(o

t , os) + L L I T (ca, cb), (22)

where LC E represents the cross-entropy loss, and α and β are
two weighting parameters.

D. Optimization
Training the DFTD framework consists of optimizing the

region-aware disentanglement module MR AD and imputation-
induced distillation module MI I D via minimizing the
following total loss

L total = Lrel
+ Lspe

+ LMI I D . (23)

In the training stage, we first use modality-complete subjects
to train MR AD and MI I D under the supervision of their
disease labels. Next, for each modality-incomplete subject
(i.e., only modality a available), we obtain two disentangled
representations ca and sa using the trained MR AD , and impute
the representation of the missing modality b using the trained
ULIT . The imputed representations are then used to fine-tune
MI I D under the supervision of the corresponding disease
label, while fixing MR AD . The workflow of the training stage
is summarized in Algorithm 1.

In the inference stage, we assume that each subject
only has the scan of modality a. We first obtain the
global representation fa using the trained MR AD , and then
perform the diagnosis using the student branch S of MI I D .
Due to the knowledge distillation from the teacher branch T to
S, the student branch S is able to implicitly discover the multi-
modality knowledge (i.e., the global representation of modality
a and the imputed inter-modality relevant representation of
modality b), and hence produce accurate diagnosis.

IV. EXPERIMENTS AND RESULTS

A. Dataset
T1-weighted sMRI and FDG PET scans from the ADNI

database (adni.loni.usc.edu), including ADNI-1, ADNI-2, and
ADNI-GO [8], were used for this study. All scans were
acquired from 1248 subjects, including 347 AD patients,
417 cognitively normal (CN) subjects, and 484 mild cognitive

Authorized licensed use limited to: Univ of Calif San Francisco. Downloaded on April 16,2024 at 20:43:48 UTC from IEEE Xplore.  Restrictions apply. 



3572 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 42, NO. 12, DECEMBER 2023

Algorithm 1 Optimization for the Proposed DFTD Frame-
work
Input:

Modlity-complete training samples xc
Modlity-incomplete training samples xin
Diagnosis labels of all training samples y
Pre-defined Learning rate lr , Maximum epoch E , K , α

and β

Output:
Updated parameters of MR AD and MI I D

1: Randomly Initialize the weights of MR AD and MI I D
2: repeat
3: Choose a batch of modality-complete data from xc
4: Calculate ca and cb through Fa

◦ Ha
c and Fb

◦ Hb
c

5: Update Fa , Ha
c , Hb

c , Sa
c and Sb

c by formula 6
6: Calculate sa and sb through Fa

◦ Ha
s and Fb

◦ Hb
s

7: Update Fa , Ha
s , Hb

s , Sb
s , Da

s and Db
s by formula 14

8: Calculate c′

b based on ca through ULIT
9: Update E and D by formula 15

10: Calculate j t
i through formula 17

11: Update the MI I D by formula 22
12: until iter reaches its desired maximum
13: repeat
14: Choose a batch of modality-incomplete samples from xin

15: Calculate ca through Fa
◦ Ha

c
16: Calculate c′

b based on ca through ULIT
17: Using zero-padding for fb and calculate j t

i through
formula 17

18: Update the MI I D by formula 22
19: until iter reaches its desired maximum

impairment (MCI) individuals. These subjects were selected
solely based on their diagnostic labels, and other detailed
criteria like sex, age, slice thickness, and manufacturer were
not specifically considered. For the AD-CN classification task,
subjects that have label ‘AD’ or ‘CN’ at any time point
were selected. For each subject, scans at all available time
points, including the baseline and the following time points
were utilized to train the proposed DFTD. As for the test
set, only the baseline image of each subject (i.e., 1 image
per subject) was included to avoid misleading the model’s
prediction. For the MCI-to-AD prediction task, the selected
subjects should have disease label ‘MCI’ at baseline and label
‘AD’ or ‘MCI’ after 18 months. Those MCI subjects who
would progress to AD within 18 months were regarded as
progressive MCI (pMCI) cases and those who would not
progress to AD within 18 months were considered as static
MCI (sMCI) cases. Notably, only the baseline data of each
subject (i.e., one image per subject) was used for both training
and test. The demography of this dataset is shown in Table II.

B. Preprocessing
For MRI data, we downloaded original scans from the

ADNI database and performed the following pre-processing
procedures. First, we applied the Anterior Commissure (AC)-
Posterior Commissure (PC) reorientation to all scans and

corrected their small motions. Then, we applied the non-
parametric non-uniform intensity normalization (N3) to each
scan. Next, we employed the MINC program mritotal to
transform each original scan to the MNI305 atlas, followed by
skull stripping and cerebellum removal. All these procedures
were conducted by using the FreeSurfer software [46].

For PET data, we downloaded the preprocessed scans
with the third preprocessing type of ‘CO-REG, AVG,
STANDARDIZED IMAGE AND VOXEL SIZE’ (http://adni.l
oni.usc.edu/methods/pet-analysis-method/pet-analysis).
Specifically, the preprocessing procedures provided by the
ADNI database consist of (1) smoothing, (2) calculating and
applying coregistration, (3) averaging frames, (4) computing
AC-PC orient baseline, (5) standardizing to the baseline, and
(6) intensity normalization. Besides, we also aligned each
downloaded PET data to the space of the corresponding MRI
data using the SPM12 toolbox [47]. Finally, both MRI and
PET data were resized to 256 × 256 × 256 voxels and the
voxel values are normalized to the range between 0 and 1.

C. Experimental Settings
We evaluated the proposed DFTD framework on two tasks:

AD diagnosis (AD-CN classification) and MCI conversion
prediction (pMCI-sMCI classification). We utilized the five-
fold cross-validation for evaluation. (1) We divided all data
into five folds at the subject level. Specifically, we first divided
the data of each class (i.e., AD, CN, sMCI, or pMCI) into
a modality-complete group and a modality-incomplete group,
and then randomly sampled the scans from each group to form
five folds, in which the number of scans and the distribution of
categories and modality (in)completeness are nearly balanced.
(2) We performed five complete training sessions in total.
In each training session, one fold was used for testing and
the remaining four folds were used for training. In each
training session, the validation set was constructed by selecting
randomly 20% modality-complete subjects from the training
set, and hence has non-overlap with the test set. The validation
set was used to tune hyper-parameters and monitor the training
process to prevent over-fitting. Evaluation metrics we used
include the area under receiver operating characteristic (AUC),
average precision (AP), sensitivity (SEN), specificity (SPE),
and Matthews correlation coefficient (MCC).

In the region-aware disentanglement module MR AD , each
of the four encoders Fa

◦ Ha
c , Fa

◦ Ha
s , Fb

◦ Hb
c and Fb

◦ Hb
s

consists of five convolutional layers with 16, 32, 64, 64 and
64 channels. All layers are followed by 3× 3×3 max-pooling
layers with a stride of 2, as well as the instance normalization
and ReLU activation. The Fa and Fb are composed of the
first three convolutional layers and are used to extract the
intermediate feature maps ma and mb. The discriminators Sa

c ,
Sb

c , Sa
s , Sb

s , Da
s , Db

s are all composed of three fully-connected
layers with ReLU activation, and the output dimension of each
layer is 256, 64 and 1, respectively. In the imputation-induced
distillation module MI I D , both the student branch S and
the teacher branch T consist of four fully-connected layers,
with output dimension of 512, 256, 64 and 1, respectively.
There are three fully connected layers followed by ReLU
activation in the encoder E and the decoder D of the lateral
inter-modality transition unit ULIT , respectively. Each layer
performs down-sampling or up-sampling with ratio of 2 to
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TABLE II
DEMOGRAPHIC INFORMATION OF 1248 SUBJECTS. THE RIGHT UPPER

MARK ( · ) REPRESENTS THE NUMBER OF SCANS AVAILABLE

its input representations. All sub-models were implemented
under Pytorch and optimized using the Adam optimizer with
an initial learning rate of 1e−3. The batch size is set to 8 and
the training stops when the model fails to improve performance
on the validation set over 50 epochs.

D. Comparing to Existing Methods

We compared our DFTD framework against six methods,
including (1) a conventional deep learning framework for AD
diagnosis using only sMRI scans [48]; (2) a modality fusion
network for disease diagnosis using subjects with complete
two-modality data [49]; (3) a subspace learning method which
can utilize all avalible data to conduct diagnosis [11]; (4)
two GAN-based image imputation methods which impute
missing PET scans first and then conduct multi-modality
diagnosis [30], [31]; and (5) a knowledge distillation-based
method [13]. We implemented these methods using their
default hyper-parameters and tested them on our dataset.

The performance of each method is recorded in Table III.
For AD-CN classification, our DFTD framework achieves
an AUC of 96.85%, an AP of 90.23%, a SEN of 91.73%,
a SPE of 93.69% and a MCC of 84.21%, ranking the
first in all four metrics. Specifically, the method using only
sMRI data [48] achieves the worst performance among these
methods, suggesting that using multi-modality data [11],
[30], [31], [49] could explore more information to help
improve the performance of AD diagnosis. Comparing to the
subspace learning-based method [11], our DFTD achieves
an AUC improvement of 4.68 percent points. It implies
that imputing missing representations could increase the
multiformity information of the features and is effective in
boosting the classification performance. Besides, comparing
to two imputation-based methods, the AUC of the proposed
framework achieves an improvement of more than 1.77 percent
points, suggesting that disentangling the inter-modality
relevant representations before conducting synthesis and
performing imputation-induced distillation can further improve
diagnosis performance. For MCI conversion prediction, the
proposed DFTD framework achieves an AUC of 83.81%,
an AP of 77.26%, a SEN of 72.97%, a SPE of 79.02% and
a MCC of 51.27%, all ranking the best among competing
methods. Table III shows that the performance of multi-
modality based methods [11], [30], [31], [49] remains better
than that of single-modality based method [48] on this
task. Meanwhile, the performance of methods which involve
modality-missing images is better than that of methods using
only modality-complete data, and image imputation based
methods further improve subspace learning-based methods.

What’s more, the proposed DFTD framework outperforms the
other methods with a substantial improvement on all metrics,
demonstrating the ideas of region-aware disentanglement and
imputation-induced distillation is especially effective on this
challenging task.

E. Effectiveness of Disentanglement
To evaluate the effectiveness of the proposed region-

aware disentanglement module MR AD , we chose the AD-
CN classification task as a case study and compared the
performance of each DFTD variant. In Model I, Model II, and
Model III, we conducted missing modality imputation using
the lateral inter-modality transition unit ULIT based on the
global representations, intra-modality specific representations,
and inter-modality relevant representations of the existing
modality, respectively. Specifically, in Model I, the global
representations (i.e., the intra-modality specific representations
and inter-modality relevant representations) of the existing
modality are needed for missing modality imputation.
In Model II, inter-modality relevant representations should
be calculated, before obtaining the intra-modality specific
representations which are needed for missing modality
imputation. Therefore, all loss functions, including Lrel

M I , Lspe
M I ,

L i
Sa

c
, L i

Sb
c
, L i

Sa
s
, L i

Sb
s
, La

adv and Lb
adv , are used in both models.

In Model III, only the inter-modality relevant representations
need to be calculated. Thus, only Lrel

M I , L i
Sa

c
, L i

Sb
c
, L i

Sa
s
, and

L i
Sb

s
are utilized.

The performance of these models is shown in Table IV.
The performance of Model II is obviously worse than
others, demonstrating that using the intra-modality specific
representations of the existing modality to impute the
representations of missing modality is not effective. This
is not surprising, since there is little modality relevance in
these intra-modality specific representations. Model I performs
better than Model II, due to the modality relevance that exists
in the global representation. However, the performance of
Model I is worse than Model III, probably since the modality-
specific features of the global representations introduce
biased information to the imputation process. Besides, the
proposed DFTD further improves Model III with an AUC
increase of 0.87 percent points, verifying the effectiveness of
taking disease-related regions into account when conducting
disentanglement.

F. Ablation Study for MIID

In the imputation-induced distillation module MI I D ,
a lateral inter-modality transition unit ULIT is inserted
between each layer of the student branch S and integrated
teacher branch T to impute the representations of the
missing modality. To validate its effectiveness, we discard
the ULIT unit and perform knowledge distillation only for
those modality-complete sMRI-PET pairs based on their
global feature representations fa and fb, as implemented by
Model 1. During this process, the loss function L L I T is not
utilized for missing modality imputation. Only LC E ( fa, y),
LF

Dis(o
t , os), LC E ( j t

0, y), and LP
Dis( p̂s, p̂t ; K ) are utilized for

multi-modality knowledge distillation and disease diagnosis.
Meanwhile, we conducted an ablation study to evaluate the
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TABLE III
RESULTS ((MEAN±STD)/%) OF SEVEN METHODS IN AD-CN CLASSIFICATION AND MCI-TO-AD PREDICTION ON OUR DATASET. NOTE THAT

‘±STD’ REPRESENTS THE EMPIRICAL STANDARD DEVIATION ACROSS THE 5 FOLDS

TABLE IV
PERFORMANCES OF EACH VARIANT OF THE PROPOSED MRAD .

ISR: INTRA-MODALITY SPECIFIC REPRESENTATIONS. IRR:
INTER-MODALITY RELEVANT REPRESENTATIONS. RA: REGION-AWARE

DISENTANGLEMENT. NOTE THAT ‘±STD’ REPRESENTS THE

EMPIRICAL STANDARD DEVIATION ACROSS THE 5 FOLDS

TABLE V
PERFORMANCES OF EACH COMPONENT OF THE PROPOSED MIID .

FD: FEATURE DISTILLATION. SD: SOFT LABEL DISTILLATION.
NOTE THAT ‘±STD’ REPRESENTS THE EMPIRICAL STANDARD

DEVIATION ACROSS THE 5 FOLDS

effectiveness of feature distillation and soft label distillation,
implemented by Model 2 and Model 3, respectively. In Model
2, only L L I T , LC E ( fa, y), LC E ( j t

0, y), and LF
Dis(o

t , os) are
utilized for representation imputation, feature distillation and
disease diagnosis. In Model 3, only the soft label distillation
is performed, where L L I T , LC E ( fa, y), LC E ( j t

0, y), and
LP

Dis( p̂s, p̂t ; K ) are utilized. The performance of these
variants is shown in Table V. It reveals that the proposed
DFTD framework outperforms Model 1 with a significant
AUC improvement of 2.81 percent points, demonstrating
that imputing missing features for those modality-incomplete
samples is helpful for disease diagnosis. Moreover, comparing

Fig. 2. Plots of model performance (AUC and AP) on validation set
versus settings of hyper-parameters α and β.

TABLE VI
PERFORMANCES OF THE PROPOSED FRAMEWORK ON AD-CN

CLASSIFICATION WITH DIFFERENT HYPER-PARAMETER VALUES OF K.
NOTE THAT ‘±STD’ REPRESENTS THE EMPIRICAL STANDARD

DEVIATION ACROSS THE 5 FOLDS

to Model 2 and Model 3, our DFTD framework achieves the
best performance when utilizing both feature distillation and
soft label distillation to perform multi-modality knowledge
transfer.

G. Hyper-Parameter Settings
When optimizing the proposed imputation-induced distilla-

tion module MI I D , α and β are two hyper-parameters which
jointly balance the importance of the feature distillation loss
and the soft label distillation loss (see Eq. 22). We empirically
adjust their values simultaneously and performed the AD-
CN classification task with α ∈ {0.1, 0.5, 1} and β ∈

{0.01, 0.05, 0.1}. Fig. 2 shows the changing curve of AUC and
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TABLE VII
PERFORMANCES OF OUR DFTD FRAMEWORK WITH DIFFERENT

BACKBONES ON AD-CN CLASSIFICATION TASK. NOTE THAT ‘±STD’
REPRESENTS THE EMPIRICAL STANDARD DEVIATION

ACROSS THE 5 FOLDS

AP with varying values of α and β, keeping other settings
fixed. We find that DFTD is robust on different values of
α and β, but achieves the best performance on both metrics
when setting α to 1 and β to 0.05, respectively. What’s more,
with the determined values of α and β, we further discuss
different values {0.1, 0.5, 1} of the hyperparameters K , which
is a temperature scaling parameter in the knowledge distillation
process (see Eq. 18 and Eq. 19). Table VI shows that when
setting K to the value of 1, the proposed DFTD framework
obtains an AUC of 96.85%, an AP of 90.23%, a SEN of
91.73% and a SPE of 93.69%, achieving the best performance
on all four metrics.

H. Backbone Architecture of MRAD

The backbone we used consists of five convolutional layers.
Besides that, we attempted to use 3D ResNet-10 [50] and 3D
ShuffleNet-V1 [51], respectively, as the backbone of MR AD .
Experimental results were listed in Table VII. It shows that,
no matter which backbone is used, the model with MR AD
substantially outperforms the one without MR AD , indicating
that the proposed MR AD is effective with different backbones.
Besides, our MR AD achieves slightly better performance
when using the backbone with five convolutional layers.

I. Statistical Analysis
We adopted the Student t-test to determine whether

the performance gain achieved by the proposed DFTD
framework over the competing methods is statistically
significant. We assumed that the AUC/AP/SEN/SPE/MCC
values of DFTD and each competing method are random
variables X1 and X2, respectively, each following a Gaussian
distribution, i.e., X1 ∼ N (µ1, σ1

2), X2 ∼ N (µ2, σ2
2). The

difference between X1 and X2 is defined as 1 = X1−X2. The
hypotheses to be tested are H0: µ1 ≤ 0 versus H1: µ1 > 0.
To enhance the rigor of this statistical testing and control the
overall false positive rate, we applied the Bonferroni correction
to adjust the significance level. To achieve this, we divided
the original level of significance (α = 0.05) by the total
number of tests performed (m = 6 × 5), which yielded a
new significance threshold of α′

= α/m = 0.00167. Our
analysis, as presented in Table VIII, indicates that for the
vast majority of comparisons with competing methods, the
calculated p-values were below the adjusted significance level
of α′

= 0.00167. As a result, we were able to reject the null

TABLE VIII
THE P-VALUES OF THE STUDENT T-TEST PERFORMED ON AD-CN

CLASSIFICATION TASK. THE SIGNIFICANCE LEVEL IS SET TO

α′
= 0.00167 AFTER BONFERRONI CORRECTION

hypothesis (H0) and accept the alternative hypothesis (H1),
indicating that the DFTD framework performed significantly
better than the other competing methods in terms of five
evaluation metrics.

J. Embeddings Visualization
To illustrate the effectiveness of the region-aware disen-

tanglement module MR AD , we visualized three groups of
representations on the validation set in Fig. 3, including
the inter-modality-relevant representations from a randomly
initialized MR AD (Fig. 3(a)), the inter-modality-relevant
representations from a well-trained MR AD (Fig. 3(b)) and
the disentangled inter-modality-relevant representations and
intra-modality specific representations (Fig. 3(c)). For each
paradigm, the “embedding” is a 512-dimensional feature
vector. The embedding representations of each sample are
projected into a two-dimensional feature space using the
principal component analysis (PCA) for the visualization
purpose. As shown in Fig. 3(a), although the distributions
of the inter-modality-relevant representations of sMRI and
PET from a randomly initialized MR AD overlap in some
parts, the overall distance between two distributions are large
and the two-modality embeddings are not relevant closely.
By contrast, the distributions of the two inter-modality-relevant
representations for sMRI and PET in Fig. 3(b) are very
similar, which meets the expectation that the well-learned
inter-modality representations ca and cb are highly relevant
with each other. Therefore, due to the high relevance and
close distribution distance, the feature translation becomes
possible. Meanwhile, the classification boundaries in Fig. 3(b)
remain separable while the relevance between inter-modalities
features improves a lot, which demonstrates the effectiveness
of our MR AD . In Fig. 3(c), the inter-modality-relevant
representations and intra-modality-specific representations of
sMRI or PET are separable while the inter-modality-relevant
representations of two modalities are relevant with each
other, which further demonstrates our MR AD can successfully
disentangle two kinds of representations from the original
images.
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Fig. 3. Embeddings Visualization. (a) Inter-modality-relevant representations from a randomly initialized MRAD. (b) Inter-modality-relevant
representations from a well-trained MRAD. (c) Disentangled inter-modality-relevant representations and intra-modality specific representations
from a well-trained MRAD.

Fig. 4. Visualization of salience maps (overlaid on the original images x)
for sMRI and PET, with each element denoting the salience of a specific
brain region.

K. Visualization of Salient Regions

We visualized the salience of each brain region in Fig. 4.
In Fig. 4(a), we first visualized the salience of each brain
region for the MRI modality according to the region weight
learned by our DFTD framework. Specifically, in the proposed
region-aware disentanglement module MR AD , we split each
feature map into N = 4 × 4 × 4 non-overlapping regions.
We assigned each region a learnable weight ωai , aiming to
incorporate the brain region salience into the disentanglement
process. The weight ωai of each region is a learnable
parameter that participates in the optimization of the region-
aware disentanglement module MR AD . It can be updated
automatically by minimizing Eq.3 and Eq.7 when optimizing
MR AD . Thus, after the model converges at the end of training
stage, we can obtain the optimized weight of each region.
Then, we take each region weight as a coefficient, and utilize
a Gaussian kernel function to draw a Gaussian distribution
based on this coefficient. We utilized the Gaussian distribution
map of each coefficient as a mask and covered it on the
corresponding brain region of a MRI image, aiming to show
the salience of this brain region. The high (H) and low (L)
salience was denoted by red and blue, respectively. To prove
the reliability of the regional weights learned in the MR AD

module, we further visualized the discrimination ability of
each region in Fig. 4(b) by considering the contribution of
each region to the diagnosis separately. For the ith region,
instead of setting its weight ωai as a learnable parameter,
we set it to a fixed value 1, and set the weights of other regions
to 0. This ensures the disentangled inter-modality relevant
representation ca and intra-modality specific representation sa
are mainly related to this region. Then, we optimized the
modules MR AD and MI I D of our DFTD framework, and
used the AUC of classification as the diagnosis contribution
of the ith region. We normalize the contribution of all regions
and used them as coefficients to draw Gaussian distribution
maps. It reveals that the most relative regions in Fig. 4(a) are
also the most discriminative regions in Fig. 4(b). It suggests
that the proposed DFTD framework can automatically locate
the disease-related regions in the brain. For the PET modality,
the same operations were performed for each region. The
salient regions determined by the proposed MR AD module
and the diagnosis contribution of each region was visualized in
Fig. 4(c) and Fig. 4(d), respectively. It shows that the locations
of the most discriminative regions are partially overlapped in
MRI and PET modalities. On one hand, the existence of non-
overlapping regions suggests that both modalities can provide
complementary information for brain disease diagnosis. On the
other hand, the difference in discriminatory abilities suggests
that PET provides a way to represent features that is different
from MRI. Thus, conducting missing modality imputation
based on the inter-modality relevance between two modalities
can contribute to improving the diagnosis performance.

V. DISCUSSIONS

A. Advantages
The proposed DFTD framework has three distinct advan-

tages over existing methods. First, traditional multi-modality
methods [9], [10] discard the subjects with incomplete scans,
leading to a reduced number of training cases and consequent
performance degradation. While the proposed DFTD utilizes
all scans to perform AD and MCI diagnosis, and thus
achieves better performance by making full use of multi-
modality knowledge from available data. Second, subspace
learning-based methods [11] use different learning schemes
for modality-complete data and modality-incomplete data, and
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cannot learn the modality correlation due to the missing
modality. On the contrary, the proposed DFTD depicts the
relevance among different modalities more explicitly, and can
explore more abundant correlations between the existing and
missing modalities. Third, existing modality imputation-based
methods [30], [31] first generate the whole missing-modality
image, and then extract features from both existing images
and generated images for classification. Hence, these methods
inevitably suffer from complex computation and biased
information in image generation. Moreover, in the inference
phase, these methods [30], [31] cannot perform disease
diagnosis before the completion of modality imputation,
leading to increased inference time and limited clinical
value. By contrast, the proposed DFTD only needs to
impute the modality-relevant representation for the missing
modality, which reduces the computation complexity and
avoids redundant information. In the inference phase, our
DFTD can perform multi-modality diagnosis of a subject by
using only single-modality data, resulting in faster inference
speed and better clinical value.

B. Limitations
Meanwhile, the proposed DFTD framework also has three

major limitations. First, the data used for this study are
from the ADNI database and are preprocessed after data
collection. However, the data collected in clinical practice may
differ a lot in quality from the ADNI data we used, which
may degrade the model performance to some extent. Thus,
our future work is to explore data harmonization / domain
adaptation techniques and capture unified features regardless
of image quality. Second, comparing to the dataset used for
computer vision research such as ImageNet, the dataset used
for this study is relatively small. As a deep learning model
requires a myriad number of data for training, our DFTD
relies its performance heavily on the number of training data.
In our future work, we will explore how to expand the data
distribution with the inspiration from augmentation-based few-
shot learning techniques. Third, the disease-related regions
were determined by the region-aware disentanglement module
in a data-driven manner, without considering the related
findings reported in the literature. Another future work is to
collaborate with clinical experts and incorporate the clinical
prior knowledge into the decision process of the proposed
framework.

C. Transfer to Other Tasks
Although the proposed DFTD framework is designed for

the diagnosis of neural degenerative diseases, the principles
behind it are generic and can be transferred to other multi-
modality medical image analysis tasks. Taking brain tumor
segmentation from multi-sequence MRI for example, the
modality missing issue is usually encountered, and we can
easily extend our DFTD framework to accomplish this task.
Let the available sequence be denoted by a and the missing
sequence be denoted by b. We first impute the missing
representation of sequence b and then fuse the representations
of both sequences for tumor segmentation. When generating
the representation of sequence b, the idea of disentangling
the inter-sequence relevant information from sequence a and

using it alone for imputation to avoid redundant information is
rational. Thus, the first region-aware disentanglement module
MR AD of the proposed DFTD can be directly adopted to
extract the disentangled representation. When fusing multi-
sequence representations for tumor segmentation, the idea
of distilling the multi-sequence knowledge from both the
existing representation and imputed representation to single-
sequence network is also rational. Therefore, in the second
imputation-induced distillation module MI I D , we need (1)
replace the student and teacher branches with two encoder-
decoder based segmentation networks; and (2) replace the
cross-entropy classification loss with a Dice loss to perform
segmentation.

VI. CONCLUSION

To deal with the modality-missing problem encountered
in multi-modality AD diagnosis, we propose the DFTD
framework in this paper, which consists of a region-
aware disentanglement module and an imputation-induced
distillation module. The region-aware disentanglement module
disentangles inter-modality relevant representations and intra-
modality specific representations with emphasis in diagnosis-
related image regions. The imputation-induced distillation
module performs multi-modality knowledge transfer and
incorporates a lateral inter-modality transition unit to impute
the representation of missing modality. We evaluated this
framework against five existing methods on an ADNI dataset
with 1248 subjects. Our results show that the proposed DFTD
framework achieves the best performance in both AD-NC
classification and MCI-AD conversion prediction, suggesting
DFTD is effective for tackling the modality-missing issue.
In our future work, we will extend the proposed DFTD to
an approach that could deal with more modalities.
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